
NYCY 0,6/1 kV

nach VDE 0276

ANWENDUNG

Energieverteilerkabel für Industrie und Schaltanlagen, Kraftwerke, Hausanschlüsse und Straßenbeleuchtung sowie als Steuerkabel zur Übertragung von Steuer- und Regelimpulsen und Messwerten. Dort wo erhöhter elektrischer als auch mechanischer Schutz gefordert wird. Verlegung in Erde, im Wasser, im Freien, in Innenräumen, in Beton und Kabelkanälen.

AUFBAU

Leiter: Ein- oder mehrdrähtiger blanker Kupferleiter
Aderisolation: PVC DIV 4
Aderkennzeichnung: Farbe nach DIN VDE 0293
Verseilung: Adern in Lagen
Konzentrischer Leiter: Kupferdrähte, verseilt mit Gegenwendel aus
Kupferband
Außenmantel: PVC DMV 5 flammwidrig; Farbe: schwarz

VERHALTEN IM BRANDFALL

Flammwidrigkeit geprüft nach VDE 0482-332-1-2/IEC 60332-1

ELEKTRISCHE EIGENSCHAFTEN

Nennspannung U ₀ / U	0,6/1 kV			
Prüfspannung	4 kV			

THERMISCHE & MECHANISCHE EIGENSCHAFTEN

Temperaturbereich bewegt	-5°C bis +50°C			
Temperaturbereich fest verlegt	-40°C bis +70°C			
Biegeradius, fest verlegt, eindrähtig	15 x Durchmesser			
Biegeradius, fest verlegt, mehrdrähtig	12 x Durchmesser			

LEITERFORMEN

(nach DIN VDE 0295)
RE rund, eindrähtig
RM rund, mehrdrähtig
RMv rund, mehrdrähtig, verdichtet
SM sektorförmig, mehrdrähtig
SMv sektorförmig, mehrdrähtig, verdichtet

Änderungen im Sinne des technischen Fortschritts und Irrtum vorbehalten

Aderzahl und Nennquerschnitt		Durchmesser ca. mm	Kabelgewicht ca. kg/km	Cu-Zahl kg/km
2 x 1,5/1,5	RE	13,0	200	52
2 x 2,5/2,5	RE	13,6	260	80
2 x 4/4	RE	15,4	350	123
2 x 6/6	RE	16,9	430	182
2 x 10/10	RE	18,5	520	312
2 x 16/16	RE	20,5	720	489
3 x 1,5/1,5	RE	13,2	220	66
3 x 2,5/2,5	RE	14,2	280	104
3 x 2,5/10	RE	14,4	359	192
3 x 2,5/16	RE		350	240
3 x 4/4	RE	16,3	390	161
3 x 6/6	RE	17,3	500	240
3 x 10/10	RE	20,0	680	408
3 x 16/16	RE	23,0	1010	643
4 x 1,5/1,5	RE	14,2	250	81
4 x 2,5/2,5	RE	15,3	340	128
4 x 4/4	RE	17,3	460	200
4 x 6/6	RE	18,4	580	297
4 x 10/10	RE	21,0	765	504
4 x 16/16	RE	23,0	1060	796
5 x 1,5/1,5	RE	15,0	330	95
5 x 2,5/2,5	RE	16,0	400	152
5 x 4/4	RE	19,0	550	238
5 x 6/6	RE	21,0	700	355
7 x 1,5/2,5	RE	15,3	350	133
7 x 2,5/2,5	RE	17,4	450	200
7 x 4/4	RE	20,0	600	315
7 x 6/6	RE	22,5	790	470
10 x 1,5/2,5	RE	18,4	410	176
10 x 2,5/4	RE	20,4	600	286
10 x 4/6	RE	23,5	900	451
12 x 1,5/2,5	RE	19,4	470	205
12 x 2,5/4	RE	20,5	660	334
12 x 4/6	RE	24,5	1060	528
14 x 1,5/2,5	RE	20,4	520	234
14 x 2,5/6	RE	21,5	750	403
16 x 1,5/4	RE	20,0	620	276
16 x 2,5/6	RE	22,5	800	451
19 x 1,5/4	RE	22,5	660	320
19 x 2,5/6	RE	23,5	940	523
21 x 1,5/6	RE	23,0	790	369
24 x 1,5/6	RE	25,5	850	413
24 x 2,5/10	RE	27,6	1150	696
24 x 4/10	RE	32,3	1813	1042

	Aderzahl und Nennquerschnitt		Durchmesser ca. mm	Kabelgewicht ca. kg/km	Cu-Zahl kg/km	Aderzahl und Nennquerschnitt	Durchmesser ca. mm	Kabelgewicht ca. kg/km	
NYCY									
	30 x 1,5/6	RE	26,5	1020	499				
	30 x 2,5/10	RE	29,5	1600	840				
	40 x 1,5/10	RE	30,0	1280	696				
	40 x 2,5/10	RE	33,0	1660	1080				
	52 x 1,5/10	RE	32,0	1600	869				
	52 x 2,5/10	RE	35,0	2000	1368				
	61 x 1,5/10	RE	33,0	2000	998				
	61 x 2,5/10	RE	36,0	2280	1584				
			,,,						